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Abstract-A problem formulation for a continuum thermomechanical description of martensitic
phase transitions (PT) in e1astoplastic materials is presented. Stress history dependence, during the
transformation process, is a characteristic feature of the new PT criterion. Relatively simple mech­
anical models for noncoherence and fracture at interfaces are proposed. Solution algorithms (which
include, in particular, the solution of standard elastoplastic contact problem) and numerical results
for elastoplastic model problems with PT (noncoherent interface, interface with fracture, moving
interface, progress of PT zone) are presented. It is shown that: (a) a noncoherent interface and
fracture promote considerably nucleation; (b) a noncohe'rent interface has low mobility or cannot
move at all which agrees with known experiments; (c) for elastic materials the growth of a single
connected region of new phase occurs; for elastoplastic materials complex multiple connected PT
region (discrete microstructure) is obtained. © 1997 Published by Elsevier Science Ltd.

I. INTRODUCTION

Phase transitions (PT) in elastoplastic materials playa significant role in a lot of advanced
technical problems, e.g. for thermomechanical treatment of metals, for transformation­
induced plasticity phenomenon and others. Martensitic PT in elastoplastic materials is a
complex thermomechanical process accompanied by the change of mechanical properties,
transformation strain and a complicated distribution of local stresses and strains. The
difficulties of a thermomechanical description of PT are related to the definition of the PT
condition, formulation of boundary value problem and its numerical solution.

Various types of numerical methods for PT in elastoplastic materials are known. The
peculiarity of stress-strain state during the PT without thermodynamical description was
treated by Leblond et ai. (1989) and Mitter (1987). Simulation of PT-kinetics in terms of
volume fraction of new phase is considered by Inoue and Raniecki (1978), Novikov et ai.
(1988,1991), Levitas et af. (1989), Stringfellow et ai. (1992), Simonsson (1994) and Denis
(1996). Such descriptions are not the topic of our paper.

We will consider the instantaneous occurrence of PT in some volume based on ther­
modynamics, without the introduction of volume fraction and prescribing the kinetic
equations. There are only two known numerical approaches of such type for PT in ela­
stoplastic materials. Ganghoffer et ai. (1991) and Marketz and Fischer (1994a, 1994b) used
FEM to model PT progress in a grain (appearance of martensitic plates). Typical of these
papers is that the PT conditions for elastoplastic materials are not related directly to the
second law of thermodynamics and the dissipation due to the PT. That is why it is difficult
to understand the physical sense of these conditions and to choose which one is correct and
which not.

In papers by Levitas (1995a, 1995b, 1995c, 1996, 1997a, 1997b) a new thermo­
mechanical description of PT in elastoplastic materials, based on the second law of
thermodynamics, was proposed. The goal of this paper is to show how this new PT criterion
can be used for computations using the finite element method and which features of PT
can be described by it. We will not consider here crystallographic peculiarities of PT, but
deal with dilatational transformation strain only. New condition of nucleation (which also
differs from known approaches) includes the history of local stresses variation in nucleus
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during the transformation process. Therefore, knowledge of stresses and strains before and
after PT does not give sufficient information to calculate PT conditions. This fact causes
additional difficulties for the numerical method. At first, we will consider the formulation
of an elastoplastic problem with PT based on the new PT criterion and related maximum
principle. Then we will consider the simplest model problem with a given PT region and
will calculate the condition for PT in this region (i.e. inverse problem is solved) and will
investigate the progress of plastic strains (TRIP) in elastoplastic sample under cyclic
appearance and disappearance of new phase nucleus at fixed external force. Within this
formulation we show a simple way of admitting noncoherence (sliding) and fracture at the
fixed and moving interfaces between new and old phases. It will be shown that noncoherence
and fracture at the interface considerably change the PT process. Then the simulation of
PT progress, based on the maximum principle for PT, will be considered. Element by
element technique is used to model PT progress. It will be shown that for elastic malerials
the growth of a single connected region of a new phase occurs; for elastoplastic malerials
complex multiple connected PT region (discrete microstructure) is obtained. All the model
problems under consideration are axisymmetric and restricted to small strains. To calculate
the PT conditions for the above problems, elastoplastic contact problems are solved by
FEM [Idesman and Levitas (1995)] to determine variation of local stresses as a function of
growing transformation strain.

2. THERMOMECHANICAL THEORY OF PT

2.1. Phase transition criterion
Let us consider a volume, V, of a multiphase material with prescribed boundary data

on a surface S. Assume that in some volume Vn E V with the boundary Ln a PT occurs in
time lit. We use the second law of thermodynamics for each point of a volume Vn in the
form of the Plank inequality

!?P = 0' : i; - ptj; - psO ? O. (I)

Here, !?P is the rate of dissipation per unit volume, p is the mass density, s is the entropy, t/!
is the specific Helmholtz free energy, 0' and s are the stress and strain tensors and () is the
temperature. PT is considered as a thermomechanical process of growth of transformation
(Bain) strain from the initial to the final value, which is accompanied by, a change in all the
material's properties. Small strains and linear decomposition of total strain s are assumed:

(2)

where Se' Sp and SI are elastic, plastic and transformation strains, respectively, u is the
displacement vector and V is the gradient operator. The total dissipation increment during
the PT in each transforming material point is defined as follows:

f.1+At r·2 i8
'N:= !?Pdt = • O':ds--lit/!- psd(),

t .., 81 OJ

(3)

where lit/! = P(t/!2-t/!I), indices 1 and 2 correspond to the beginning and the end of PT.
Assume that during PT two dissipative processes occur: PT itself and plastic flow. The
dissipation increment in the course of PT due to plastic flow (when the free energy is
independent of sp) can be given as

(4)

The dissipation increment X due to a PT itself (the driving force for the PT) is a difference



Martensitic phase transitions 857

between Nand Np • Neglecting the temperature variation during the PT (the isothermal
process is assumed) we have

(5)

The simplest assumption that both dissipative processes are mutually independent results
in conditions that the dissipation increment due to each of dissipative processes should be
non-negative, in particular X ~ O. Consequently, at X < 0 PT is impossible. The condition
X = 0 is the criterion of PT without dissipation due to PT, because PT is possible (non­
contradicts the second law of thermodynamics) and the dissipation increment due to PT
is zero. Since practically all martensitic transformations, even in elastic materials, are
accompanied with a dissipation and a hysteresis, the PT criterion has the form

X=k. (6)

Here, k is an experimentally determined value of dissipation due to PT, which can depend
on parameters 0, 8p, . ... At X < k PT is impossible.

Let PT occur in some volume Vn (nuclei) and for each point of nuclei Vn PT criterion
(6) should be met. Integrating this criterion over the volume Vn we obtain the nucleation
condition

(7)

or taking into account eqn (5) for X we have

(8)

Equation (8) has the same form for PT in elastic and elastoplastic materials; plasticity
affects a variation of (1 in the course of PT and the value k. If

(9)

where E; are the tensors of elastic modules of i-phase, t/Jf is the thermal part of the free
energy, then

(10)

and

i.e. the elastic strains also disappear. For case of pure dilatational transformation strain it
holds III = eol, where I is a unit tensor, 31>0 is a volumetric transformation strain. In this case
we get (1: dill = 30"0 deo, where 0"0 is the hydrostatic pressure. If the volumetric transformation
strain, temperature and k (we assumed that k is function of temperature only) are distributed
homogeneously in the nucleus, eqn (10) can be transformed into the following form :
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(11)

where 0'0 is the averaged over the nucleus pressure and X is the driving force ofPT (averaged
over the nucleus value of X). Equation (11)1 is a final form ofphase transformation criterion
which is used in the present paper. The integral in eqn (II)I is calculated numerically after
the solution of a set of boundary-value problems using finite element method. The explicit
expression for l/Jr can be adopted in the following form [Huo and Muller (1993)]:

(12)

Here VI > 0 and V2 > 0 are specific heats, SOb S02, l/JOI and l/J02 are constants and 80 is a
reference temperature. Note that in such a simplified case PT can be considered as growth
of 80 from 0 to 802 (802 is a constant for the given PT) which is accompanied by a jump in
the thermal properties.

2.2. The maximum principle for PT
To determine all unknown parameters b (position, shape and orientation of nucleus,

Ill' 112 and so on) we use the postulate of realizability [Levitas (1995a, 1995c, 1996, 1997a,
1997b)] :

If, starting from the state without PT described by

F(b*):= r (X(b*) - k(b*» d Vn < 0
Jr.

(13)

for all admissible PT parameters b* in the course of variation of boundary data, the: PT­
condition (7) is fulfilled for the first time for some of parameters b, then nucleation will
occur with this b.

If, in the course of variation of boundary data the criterion (7) is met for one or several
b, then for arbitrary other b* inequality (13) should be fulfilled, as in the opposite case for
this b* condition (7) had to be met before it was satisfied for b. Consequently, we obtain
the maximum principle

fr. (X(b*)-k(b*»dVn < 0 = Ln(X(b)-k(b»dVn (14)

for determination of all unknown parameters b. Maximum principle (14) admits equivalent
formulation:

F(b*) --+ max, F(b) = O.

From principle (14) using eqn (8) we obtain
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f'i r O'*:d(s:-sndVn-r ~ljJ*dVn-r k*dVn<O
£rJ~ J~ J~
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For particular case ofPT criterion (11), we have

(16)

(17)

As only the work integral qJ := f~02 30'0 deo depends on the volume of nucleus Vn (its position
and shape) and iTo variation in it, then from maximum principle (16) it follows

(18)

Note that the transformation strain eo(r) (r is the position vector) grows from zero to e02 in
some Vnand in V - Vnfield eo(r) is unchanged. The pressure iTo is a functional of Vnand the
process of eo(r) variation in Vno

Corresponding principles for points of coherent and noncoherent interfaces, based on
principle (14), are given in detail [Levitas (1995a, 1995b, 1995c, 1996, 1997a, 1997b)]. The
main essence of the maximum principle is that if only some dissipative process (plastic flow,
PT) can occur, then it will occur, i.e. the first fulfilment of the necessary energetic condition
is sufficient for the beginning of a dissipative process.

3. FORMULATION OF PROBLEM

Let us consider the problem formulation of martensitic PT in elastoplastic materials
using the thermomechanical description of PT. For new (nucleus) and old (matrix) phases
the standard isotropic elastic-perfectly-plastic model with von Mises yield condition is
assumed, the elastic properties of both phases are the same and the transformation strain
is volumetric. As an example of dilatational PT we can consider PT of graphite into
diamond, of hexagonal nitride boron into cubic nitride boron, as well as PT in cesium and
tin.

Here, PT will be considered as the thermomechanical process of growth of volumetric
transformation strain from zero to final value e02 in some volume Vn , which is accompanied
by a change in thermal material properties. A set of equations includes the kinematic
decomposition (2), the criterion of phase transition (11)" maximum principle (18) and the
following relationships.

3.1. Hooke's law

(19)

where .Ie and f.1. are the Lame coefficients.

3.2. Von Mises yield condition

(20)

where (Ji = (3/2s: S)I/2 is the stress intensity, s = dev 0' is the stress deviator and (Jy is the
yield stress.
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3.3. The associated plastic flow rule
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(21)

3.4. Equilibrium equations for neglected body forces

V·n = O. (22)

One of the mechanisms for getting a more advantageous stress variation in the transforming
particle is related to the possibility of displacement discontinuities across the interface. We
show a simple way of admitting noncoherence (sliding) and fracture [Levitas (1997a,
1997b)]. Three types of the interfaces between new and old phases are considered: coherent
(with continuous displacements across the interface); noncoherent (with discontinuous
tangential displacements across the interface) ; and the interface with fracture (with crack
at the interface). We assume that PT and fracture (noncoherence) criteria are thermo­
dynamically mutually independent and that these processes are coupled through the
stress fields only. If, during the growth of 1::0 and variation of material thermal properties in
nucleus, a chosen fracture criterion is met in some point of the interface, the crack appears
or grows. If, in the same process, the noncoherence criterion is satisfied, we admit sliding
in this point to a value where the criterion is violated. After completing the PT we check
with the PT criterion whether PT is thermodynamically admissible. Consequently, the
growing transformation strain I::o(r) generates the stresses which are necessary for the
appearance of fracture or noncoherence, and fracture and noncoherence change the stress
variation in the transforming particle. As the simplest fracture (noncoherence) criterion we
assume that, if the normal to interface tensile (or shear) stress reaches some critical value,
then the fracture (or sliding) in this point occurs. These conditions for a two-dimensional
problem in a local coordinate system have the following form.

3.5. Sliding condition at the interface (noncoherent interface)

1,1 = 's => u; - it~ =I- O.

3.6. Fracture condition at the interface

(23)

(24)

(25)

(26)

where (Tn and, are normal and tangential stresses at the interface, (Tc and 's are critical value
of normal and shear stresses, Us is the tangential component of velocity at the interface and
indices I and 2 identify those belonging to the matrix and the nucleus.

Thus, to determine the work integral qJ in PT condition (11)J, it is necessary to calculate
the variation of local stress distributions as function of the growing transformation strain.
For this purpose the standard elastoplastic contact problem with given volumetric trans­
formation strain and contact conditions at the interface is solved numerically using FEM.
Quadratic triangle displacement finite elements are used.

4. FINITE ELEMENT SOLUTION OF MODEL PROBLEMS

To determine the regularities of martensitic PT in elastoplastic materials using the PT
criterion, we solve the simplest boundary-value problems. It is assumed that the dissipative
threshold, k, is a function of temperature only. Then, at given temperature, k and !'1t/J0 are
known, hence the value of the work integral qJ (due to PT condition (11)1) gives full
information to evaluate the possibility of PT. For problem 4.1 the maximum principle (18)
is not necessary, since the domain of nucleation is specified a priori, but we use the principle
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to analyze the solution of the problem 4.2 and to define the positions of new nuclei for
problem 4.3. The elastic properties are Young's modulus E = 2' 105 MPa and Poisson ratio
Il = 0.3.

4.1. Nucleation ofa spherical particle within a cylindrical sample
Let us consider the axisymmetric formulation of the problem for a unit cell consisting

of a spherical inclusion within a cylindrical matrix (Figs 1 and 2). Assume that at the
given temperature and applied external axial pressure the spherical nucleus undergoes the
dilatational martensitic transformation with 1;02 = - 0.005. The transformation of graphite
particles, embedded in an iron matrix (cast iron), into diamond is a possible example.
Below, we show how the temperature of PT at given external load for given place of PT
region can be calculated. Because of symmetry, Fig. 1 shows a quarter of the unit cell of
the composite, where XI is the horizontal axis of symmetry and X 2 is the axis of revolution,
respectively. At first, a coherent interface between the particle and the matrix is assumed,
i.e. the displacements are taken to be continuous across the interface. Then we consider
noncoherent interface and interface with fracture (displacement discontinuities across the
interface). In the general case for the unit cell the following formula is valid [e.g. Levitas
(1992)]

L:z =1

Boundary conditions
AD, AB: Un ='tn=O

BC: On =P; 'tn=O
CD: On ='tn=O

Fig. 1. A quarter of cross-section of the cylindrical matrix (II) with spherical nucleus (I).

Fig. 2. Finite element mesh with refinement near the interface.
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O'(r)=A(r):1:+O'r(r), I::=~irO'.nds=~rO'dV=(O'),
V s v Jv (27)

where I: is a mean (external) stress tensor, O'(r) is local stress tensor, O'r(r) is the field of
residual stresses at I: = 0 (i.e. <O'r) = 0), A is the localization (concentration) fourth-order
tensor and n is the external unit normal to the boundary S. In the case of homogeneous
elastic properties A is an identity tensor, i.e.

(28)

A superposition of an additional pure hydrostatic pressure in the above boundary-value
problem does not influence the plastic strain and, consequently, the O'r' The additional
hydrostatic pressure contributes additively to 1:; according to eqn (28) it contributes also
additively to 0' and, consequently, to ao and can be taken into account analytically. That
is why it is sufficient to consider macroscopically one-dimensional loading in out two­
dimensional problem.

The following properties are used in the calculations: the yield stress for the matrix
0"; = 2' 102 MPa and for the nucleus O"~ = 0.46' 102 MPa. The following variation of yield
limit a~ is assumed for nucleus during phase transition:

Volume fraction of nucleus is c = 0.28. The following boundary conditions are applied:

• along AB and AD boundaries Un = 0, Tn = 0 (from symmetry condition) ;
• along CD boundary O"n = Tn = 0 (free surface) ;
• along BC boundary O"n = P, Tn = 0 (prescribed normal compressive stress P).

Here Un is the normal displacement, Tn is the tangential stress, O"n is the normal stress.
The PT is simulated by growing of compressive strain co from 0 to -0.005 under fixed

P (for matrix 8( = 0). To obtain the value of work integral, cp, the elastoplastic contact
problems are solved incrementally with a transformation strain increment l,1,col = 0.0005.
In a finite element code the transformation strain could be taken into account as a fictitious
thermal strain. Five different values of P were considered, P = 0, 50, 100, 150 and 195
MPa.

It is necessary to note that for the problem under consideration the inverse problem
has to be solved, i.e. the position and size of the PT region (nucleus) is specified a priori
and then the condition for PT is determined. For example, if at a given external load the
value of work integral, cp, is known from the calculations, then using scalar equation (11) I

the temperature of PT can be obtained. The solution algorithm for the problem is briefly
presented in Fig. 3.

4.1.1. Fixed coherent interface (appearance of nucleus). Let us consider the numerical
results. The finite element mesh with the refinement near the interface, where large gradients
of plastic strain occur, is shown in Fig. 2. Local fields of stresses, total and plastic defor­
mations were determined. Isobands of hydrostatic pressure and accumulated plastic strain
q = Je2/3 d8p : d8p) 1/2 are shown in Figs 4 and 5 at P = 0 and 150 (all results in Figs 4--8 are
represented for elastic nucleus and elastoplastic matrix excluding curves 6 in Figs 6 and 7).
At P = 0, the plastic region covers almost the whole cross-section of the matrix (excluding
the upper right corner) and pressure is distributed nonuniformly both in the matrix (with
positive and negative values) and in the nucleus (positive values). At P = 150, the plastic
strain is concentrated near the interface, the maximal value of q is more than the three
times the maximal value of q at P = O. Such a concentration of plastic strain can lead to
noncoherence at the interface. At the same time the pressure distribution is more uniform
at P = 150 (positive in the nucleus, negative in the matrix). Figures 6 and 7 give: the
relationships between the averaged (over the nucleus) hydrostatic pressure, ao, the work
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Input data: geometry of sample, elastoplastic properties of
materials, boundary conditions, friction law (sliding condition) and

fracture condition at the interface

Generation of FE mesh (quadratic triangles)

Variation of compressive force and prescription of transformation
strain eo

P=P+M (OSPSP)

Prescription of transformation strain increment
!i.E", E" =E" +!i.E 0 (OSE" SE,,)

Iterative solution of elastoplastic contact problem

E" < E"2
Calculation of increment and current value of work integral qJ

Effl

qJn+\ = qJn + 3ff,,!i.Eo; - 1J qJ = J3ffo dE oG =- G dV'(,' V v 0 ,

0

-p<p Determination ofPT conditions (temperature ofPT) for given P
using the value of work integral qJ

Fig. 3. Solution algorithm for phase transition (nucleation) in elastoplastic materials at uniaxial
compression (coherent and noncoherent interface, interface with fracture).
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integral, q>, and transformation volumetric strain, Eo, for five different values of macroscopic
axial stress, P. There is an evident saturation of values ao with the growth of 80 for each P,
which is related to a limited plastic equilibrium state. The decrease of ao for elastoplastic
nucleus (curve 6, Fig. 6) after 1801 > 0.3% is related to a decrease in the yield stress of the
nucleus with the growth of transformation strain, 80, Practically linear dependence of q>

from 80 at 1801 > 0.1 %, for each P allows the usage of a simple analytical approximation of
the obtained numerical results.

Let us show how one can use the obtained numerical results to analyze the PT
condition. It is evident that at (Ty = 0 and P = 0 we have ao = 0 and also assume that k = O.
Then the condition (11)1 results in the ordinary PT criterion of chemical thermodynamics
ljJ~ -ljJ~ = 0, which determines a phase equilibrium temperature 8e. If in a thought exper­
iment at (Ty = 0, P = 0, PT starts at temperature 8" then k:= ljJ~ (8,) -ljJ~ (8,). If k is a given
function of 8 then eqn (II), determines the PT temperature. The value of the work integral,
q>, at the given transformation volumetric strain, 00, and axial stress P is determined from
Fig. 7. In particular, at P = 0, eqn (11)1 should give an experimentally observed martensitic
start temperature, Ms. If the PT temperature and transformation volumetric strain, 80, are
given, then eqn (11), determines the value of the work integral, qJ, and axial stress, P, is
determined from Fig. 7 (by interpolation). The work integral, qJ, in most cases is negative,
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1- -131.4
2- -182.5
3- -67.78
4- -32.116
5- 1.979
6- 36.82
7- 71.66
B- 186.5
9- 141.3

18- 176.2
11- 211.8
12- 245.9

a

1- .lllI8II
2- .7BB4E-83
3- .1577E-8Z
4- .Z365I-8Z
5- .3154E-8Z
6- .394ZE-8Z
7- .4738E-8Z
B- .5519E-8Z
9- .63lI7E-8Z

18- .7IJ96E-8Z
11- .7BB4E-8Z
12- .1167ZE-8Z

b
Fig. 4. Isobands of hydrostatic pressure (a) and accumulated plastic strain (b) distribution at

volumetric transformation strain 1802 1 ~, 0.005 and P = 0 MPa (coherent interface).

i.e. mechanical work produces a negative effect (decreases the PT temperature) on th(: PT
condition. The external compressive stress increases ({! and the PT temperature (at P = 195,
({! is positive). It is necessary to note that during transformation time (with growth of
transformation strain) stresses are changed considerably, not only locally, but also the
average value over the nucleus (Fig. 6).

4.1.2. Cyclic appearance and disappearance of the coherent nucleus. We investigate the
problem of variation of the stress-strain state in an elastoplastic sample under cyclic
appearance and disappearance of the new phase nucleus at given external stresses. The
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SO XMIH=-.364E-81 YMIH=-.388E-81 XMAX= 1.84
----------,

1- -252.9
2- -282.1
3- -151.2
4- -188.3
5- -49.48
6- 1.38B
7- 52.24
8- 1B3.1
9- 154.B

IB- 2B4.8
11- 255.7
12- 386.6

a
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XMAX= 1.84 YI1AX= 1.83

1- .BB88
2- .2572E-82
3- .5145E-82
4- .7717E-82
5- .IB29E-B1
6- .1286E-Bl
7- .1543E-Bl
8- .18BIE-Bl
9- .2858E-81

18- .2315E-81
11- .2572E-81
12- .2838E-Bl

b
Fig. 5. Isobands of hydrostatic pressure (a) and accumulated plastic strain (b) distribution at

volumetric transformation strain 1802 1 = 0.005 and P = 150 MPa (coherent interface).

formulation of the problem is the same as for previous one (4.1.1), but now the trans­
formation strain in the spherical particle increases at first until Eo = - 0.005, then decreases
to zero (first cycle). Such cycles (due to cyclic temperature variation) are repeated. The
following assumptions are introduced: the interface is coherent and the nucleus is elastic
(for the problem under consideration, calculated stress intensity in the nucleus after reverse
PT is less than the yield stress of the matrix, i.e. the nucleus is also elastic at reverse PT).
In Fig. 8 the relationship between the axial plastic strain, ~, (a) averaged over the unit cell
and variation of hydrostatic pressure, iTo (b) averaged over the nucleus, for five cycles of
appearance and disappearance of the new phase nucleus, is presented (P = 50). At the same
elastic properties of the matrix and nucleus, the value ~ is the macroscopic axial plastic



866 V. 1. Levitas et al.

2

4
6

3

5

0.400.300.200.10

V
/ ..- -....

~~
IV

iJ//
V
'/

o

50

Go, MPa
150

100

-50

-100
0.00

Fig. 6. Relationship between hydrostatic pressure uo, averaged over the nucleus and transformation
volumetric strain Eo. 1,2,3,4(6),5 correspond to the values of compressive force P = 195; 150; 100;

50; O. 1-5 are for elastic nucleus, 6 is for e1astoplastic nucleus.

qJ , MPa
0.3°T~C:=~:==r=::;:I=l1

-0.30-+---t--O~~~-+-------,i-==--""'"2

-0.90-+---t-----+---~~~-+-~3

-1.50-+----+----+--~---f-"o<----'[~

5
-2.10-+rrTTTrrrr-rrrrrrrT"rTi-rrrn-rrTTt-r-rrrrrrrTt-n-rrrrrrri lEo I, %

0.00 0.10 0.20 0.30 0.40 0.50
Fig. 7. Relationship between the work integral ({! and transformation volumetric strain Eo.
(1,2,3,4(6),5 correspond to the values of compressive force P = 195; 150; 100; 50; O. 1-5 are for

elastic nucleus, 6 is for elastoplastic nucleus).

strain. It follows that increments of the macroscopic axial plastic strain per cycle, beginning
from the second cycle, are almost the same and it is possible to predict the material behavior
at cyclic PI' using only the first two cycles. This problem models the well-known TRIP
phenomena due to Greenwood-Jonson effect, when at relatively small external compressive
stresses (much less than yield stresses) it is possible to obtain a very large value of macro­
scopic plastic strains due to PI' [Mitter (1987); Padmanabhan and Dabies (1980)].

Now the work integral, qJ, is investigated. Beginning from the second cycle for direct
PI' qJd = - 0.63 MPa and for reverse PI' qJr = - 1.47 MPa. The corresponding temperature
of direct (}d and reverse (}r PI' can be detemlined from the PI' condition (11)] as

(29)

(30)

where kd and kr are the values of dissipation due to the direct and reverse PI'. From I~qns
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(fo, MPa
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·1500.10

0.40
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a b
Fig. 8. Relationship between axial plastic strain e~ (a), averaged over the unit cell, and variation of
hydrostatic pressure ito (b), averaged over the nucleus, for five cycles of appearance and dis­

appearance of new phase nucleus (P = 50 MPa).

(29) and (30), temperature hysteresis, Bd - (J" can be calculated easily. For example, if
dissipation, due to PT itself, equals zero (kd = k r == 0), temperature hysteresis is not zero
(Bd =f. (Jr) due to qJd + qJr = - 2.1 =f. 0 (i.e. due to plastic deformation, which is allowed for
at the calculation of the work integral, qJ).

4.1.3. Fixed noncoherent interface (sliding). Let us investigate the influence of non­
coherence of the interface on the PT condition. The same boundary-value problem as for
the coherent interface (the problem 4.1.1) is considered. To evaluate the range of sliding
influence the simplest friction conditions (23) and (24) with 's = 0 (this is the limit case,
another limit case is coherent interface) and intermediate values of critical shear stress
's = 40 and 100 are assumed (maximum possible value 'sma, = (l/3)li2

(Ty = 115 MPa). Iso­
bands of displacements, hydrostatic pressure and accumulated plastic strain distribution at
P = 150 MPa (noncoherent interface with critical shear stress " = 40 MPa) are presented
in Figs 9 and 10. Between points A and B the sliding zone is formed. The biggest jump of
displacements at the interface (different shades across interface correspond to the jump of
displacement) has a vertical component of displacement in the middle of the sliding zone,
between points A and B [Fig. 9(b)). Near this zone there is pressure concentration from the
side of the nucleus [Fig. lO(a)). The values of pressure in the nucleus is changed from
negative to positive. Plastic strains are concentrated in the matrix near the horizontal axis
X [Fig. lO(b)), with approximately the same maximum value as for coherent interface (but
in another place). Figures 11 and 12 give the relationships between the averaged (over the
nucleus) hydrostatic pressure, 0-0 , the work integral, qJ, and transformation volumetric
strain, eo, for different values of critical stress", (curves 1--4). As can be seen from Figs 11
and 12, noncoherence affects considerably the stress state of a sample and encourages the
PT, because the value of work integral, qJ (and, consequently, driving force X for PT) is
much bigger for the noncoherent interface than for the coherent one.

4.1.4. Fixed interface withfracture. For the noncoherent interface, jumps of tangential
displacement are permitted only, and for the interface with fracture jumps of normal
displacement can occur, which means the crack appearance. Solving, incrementally, the
e1astoplastic contact problem with fracture conditions (25) and (26) and (Tc = 50 MPa, the
progress of the crack at the interface and the variation of local stress fields are determined
as functions of the growing transformation strain. Isobands of displacements, hydrostatic
pressure and accumulated plastic strain distribution at P = 150 MPa with critical normal
stress (Tc = 50 MPa are presented in Figs 13 and 14. The final position of the crack is
between points A and B (Figs 13 and 14). The distribution ofvertical displacements is similar
to the case of the noncoherent interface, but the maximum positive value of horizontal
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Fig. 9. Isobands of horizontal (a) and vertical (b) displacement distribution (mm) at volumetric
transformation strain 18021 = 0.005 and P = ISO MPa (noncoherent interface with maximum shear

stress 1:, = 40 MPa). AB is the sliding zone.

displacements is considerably bigger than for the case of the noncoherent interface (more
than two times). The pressure distributions for the interface with fracture and the non­
coherent interface differ considerably both qualitatively and quantatively [Figs IO(a) and
I4(a)]. Near the crack tips (points A and B) the strong concentration of plastic strains
occurs [Fig. I4(b)]. Curve 5 in Figs II and 12 shows the effect of fracture with the growth
of transformation strain. Until 1801 = 0.1 %, the interface is coherent. Then, with the growth
of transformation strain, 80, a large crack appears along the greater part of the interface
and then for 1801 > 0.15%, a small growth of the crack occurs with the growth of 80' Small
oscillations of curve 5 in Fig. 11 at IBol > 0.35% are related to problem discretization: for
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Fig. 10. Isobands of hydrostatic pressure (a) and accumulated plastic strain (b) distribution at
volumetric transfonnation strain le021 = 0.005 and P;o 150 MPa (noncoherent interface with

maximum shear stress r, = 40 MPa). AB is the sliding zone.

a loading step at leol = 0.35%, the crack does not progress; and for a loading step at
leol > 0.40%, the crack tip is shifted along the length of a finite element and so on. Fracture
(as well as sliding) at the interface encourages PT, because the value of the work integral,
cp, is much bigger for the interface with fracture than for the coherent one.

4.2. The progress of PT (layer by layer) in a cylindrical sample (moving coherent and
noncoherent interface)

Above, the PT with the fixed interface was considered. Now we examine the case of
moving the coherent and noncoherent interfaces in a cylindrical sample to get regularities
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Fig. 13. Isobands of horizontal (a) and vertical (b) displacement distribution (mm) at volumetric
transformation strain leo21 = 0.005 and P = ISO MPa (with the fracture on the interface, maximum

normal stress (J, = 50 MPa). AB is the fracture zone.

of the PT progress, i.e. to study the influence of internal stresses, plastic deformation and
noncoherence due to the preceding PT on the conditions of subsequent PT. Figures 15 and
16 show the cross-section and the mesh of a cylindrical sample divided into layers. The
following boundary conditions are applied:

• along CD and DE boundaries Un = 0, Tn = 0;
• along EF boundary an = Tn = 0 (free surface);
• along CF boundary an = P = 100, Tn = 0 (prescribed compressive stress P).
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Fig. 14. Isobands of hydrostatic pressure (a) and accumulated plastic strain (b) distribution at
volumetric transformation strain 16021 = 0.005 and P = 150 MPa (with the fracture at the interface,

maximum normal stress (Te ,= 50 MPa). AB is the fracture zone.

The yield stress for the matrix is <T~ = 4.5' 102 MPa. The new phase is assumed to be elastic.
The moving interface is modeled as a different position of fixed interface, for which PT is
described in the same ways as for problems 4.1.1-4.1.3.

For this example, we also consider the inverse problem, i.e. we specify a priori the
sequence of the positions of the interface (and the region where PT occurs) during the time,
and for every interface position the PT condition is calculated, as for previous problems.
For the problem under consideration, we specify five different sequential positions of the
interface. At the beginning, PT occurs in the first layer with interface AlBl ; then PT occurs
in the second layer with interface A 2B2 and so on. The interface between the layer of the
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Fig. 15. A half ofcross-section ofa cylindrical sample. A,B" A,B" A,BJ , A.B., A,B, are the positions
of the interface at different time instants (I, II, III, IV, V are the regions where PT occurs after

corresponding displacement of the interface). X, is axis of rotation.
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Fig. 16. Finite element mesh with refinement in transforming layers.

new phase and the matrix can be coherent or noncoherent with a critical value of shear
stress at the interface Is = 200. After finishing the PT in the layer, the displacement dis­
continuities at the layer interface do not change anymore. In particular, the interface
between the layer of new phase and the layer, where PT is still occurring, can be treated as
the coherent one because additional discontinuities do not occur.

The PT, in a layer, is simulated by the growing of the compressive transformation
strain, eo, from 0 to - 0.01 with the increment leol == 0.002, under fixed P. The algorithm of
solving the problem is the same as for problem 4.1.3, but after determining the PT condition
for one layer, calculations go on to the next layer with a new position of the interface. The
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local stresses of the previous solution are used as initial data for calculation of the PT
condition of subsequent layers.

4.2.1. The coherent interface (elastic matrix). Figure 17 shows the variation of hydro­
static pressure, 110 , (a) averaged over the layer and variation of the work integral, cp, (b) for
the ith layer in the course of PT in the ith layer, i = I, II, III, IV, V. We have a linear
variation of 110 with the growth of the PT strain for every layer (due to linear elastic
problem). PT for the coherent interface at k = const is unstable (according to the maximum
principle (18)), i.e. ifPT occurs in the first layer, then at the same temperature and external
stresses PT should occur in all the remaining layers, because the value of work integral, cp
(and, hence, driving forces X) at transformation strain 180 1 = 0.01, is larger for the remaining
layers than for the first one. Consequently, to describe the stable phase equilibrium we
should assume heterogeneous k distribution or assume that k grows with increasing total
volume fraction c of a new phase in a specimen. As a final value of cp is almost com,tant,
starting with the third layer, the interface can be arrested in position A 3B3 or A4B4 •

4.2.2. The noncoherent interface (elastic and elastoplastic matrix). Let us consider the
noncoherent interface. Figure '18 (elastic matrix) shows us isobands of radial displacements
distribution at different values of transformation strain in course ofPT of the layer lea-e)
and at the motion of the interface until the middle of a sample (I). With the growth of
transformation strain the growth of the sliding zone takes place (different shades across the
interface correspond to the jump of displacements). The biggest sliding zone at the interface
takes place for PT in the first layer. For subsequent positions of the interface the sliding
zone decreases. The axial stress [Fig. 19(a)] is continuous with large regions of positive and
negative values. The hydrostatic pressure [Fig. 19(b)] distribution is discontinuous across
the interface and has a complicated character with a variation of the values from negative
to positive within every layer. Figure 20 shows the variation of hydrostatic pressure (a)
averaged over the layer and the variation of the work integral, cp; (b) for the ith layer in
the course of PT in the ith layer, i = I, II, III, IV, V. For elastic material the nonlinear
change of 110 , with the growth of PT strain within the layer (due to variation of sliding
zone), takes place [curve 1, Fig. 20(a)]. More linear character of curves 2~5 in the Fig.
20(a) is connected with the influence of the region where PT has already occurred (because
at the interface, between the layer of new phase and the layer where PT is still occurring,
there are no additional displacement discontinuities).

Comparison of Figs 17 and 19 shows that the noncoherence stimulates significantly
the PT condition in the first layer (cp increases). The PT condition in the second layer for
the noncoherent interface is worse than for the coherent interface, but a little bit better
than for the first layer of the noncoherent interface. That is why at k = const, or slightly
growing k(c), the noncoherent PT in the second layer can occur, at once, after the PT in
the first layer at the same external condition (temperature or loading). The value, (P, for
the noncoherent PT in the third layer is smaller than for first and second layers and much
smaller than for the third layer for the coherent PT. If the value k(c) is large enough to
stop the coherent interface motion at fixed external parameters in position A 2B2, A 3B3 or
A4B4 (cp ~ 0 Mpa), then it is necessary to change external parameters very significantly to
shift the noncoherent interface (cp ~ -12 MPa), but at such a change of external
parameters, the PT can occur in other places of a sample.

For example, we have investigated the problem for another sequence of the PT in
layers for the coherent and noncoherent interfaces. Two cases are considered: (a) after the
PT in the first layer, the PT occurs in the second layer: (b) after the PT in the first layer,
the PT occurs in the third layer. For the coherent interface the work integral, cp, in the
transforming layer is bigger for case (a) than for case (b). For the noncoherent interface at
some small value ofcritical shear stress, !" the value ofwork integral, cp, for the transforming
layer was bigger for case (b) than for case (a), i.e. the PT can be more profitable in the
layer which is not in contact with the transformed one.

Now we consider this problem with P = 0 and !s = 0 (limit case). Then for any layer,
if it is not in contact with the transformed layer (interface between matrix and transforming
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Fig. 17. Variation of hydrostatic pressure Ito (a) averaged over the layer and variation of the work
integral ({I (b) for the ith layer in the course ofPT in the ith layer for moving coherent interface and

elastic matrix, i = I,lI,II1,IV.
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Fig. 18. Isobands of radial displacement distribution (mm) for noncoherent interface at different
values of transformation strain in course of PT within the first layer (a-e) and at the interface

motion until the middle of a sample (f).

layer is noncoherent), the work integral, qJ, is zero (because stresses are zero due to L S = 0),
but if the transforming layer is in contact with the transformed one (interface between these
layers is coherent according to the problem formulation), the work integral, qJ, is negative
(because of the jump of negative transfomlation strain across the interface we have positive
average pressure in the transforming layer). Thus, noncoherence relaxes the stresses and
can enforce the complicated kinetics of new phase, i.e. varying critical shear stress, !" can
change the kinetics of PT.

These results explain known experimental facts, for example, that the noncoherent
interface has a low mobility or cannot move at all. The reason for the decreasing value, qJ,
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Fig. 19. Isobands of axial stresses (a) and hydrostatic pressure (b) distribution at the interface

motion until the middle of a sample.

and for moving the noncoherent interface is the change of internal stresses. So, initial
negative internal stresses in the transforming layer (due to the transformation strain in the
previous layer), which promote the PT, decrease (absolute value) considerably due to stress
relaxation during the sliding at the interface [compare initial values 0"0 for the layers in Figs
17(a) and 20(a)].

The slight difference of results for elastic and elastoplastic matrices (difference holds
only seen for PT in 3-5 layers, Fig. 20) is explained by the fact that with chosen mechanical
properties, with values of transformation strain and with critical shear stress, sliding at the
interface is more important than plastic deformation. Thus, for both fixed and moving
interface, the noncoherence changes PT conditions, considerably.
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Fig. 20. Variation of hydrostatic pressure (to (a) averaged over the layer and variation of the work
integral (b) for the ith layer in the course of PT in the ith layer for moving noncoherent interface,

i = I,II,III,IV,V. (O-for elastic matrix; ---for elastoplastic matrix).
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Fig. 21. A quarter of cross-section of the cylindrical sample with notch. I is the admitted PT region.

4.3. Progress ofPT region
Let us consider the axisymmetric problem of PT in a sample with a notch under the

external compressive load P (Figs 21 and 22). The sample with a notch is used to obtain an
initial stress concentration before the PT. The following boundary conditions are applied:

• along AB and BC boundaries Un = 0, 'tn = 0 (from symmetry condition) ;
• along CD, DE and EF boundaries O'n = 'tn = 0 (free surface);
• along AF boundary O'n = P = 100, 'tn = 0 (prescribed compressive stress P).

The yield stress for the matrix is O'~ = 5' 102 Mpa. The nucleus is assumed to be elastic and
the transformation strain is 802 = -0.005.

Now we do not specify, a priori, the region where the PT will occur, but determine the
PT region. To decrease the calculation expenditure, we only specify in advance the region
admitted for PT (active set), where PT can occur (ifit is impossible we should consider the
whole domain as admitted for PT). The following assumption is posed for calculation: PT
occurs at any time instant in one finite element (FE) only. For this state, the whole
deformation process of PT in the FE has to be computed. Every FE is considered as a
possible new nucleus. To choose the FE, where PT can occur, we should find the FE for
which the functional ({J has a maximum value (see (18)). Only after finishing the PT in one
element can the PT start in another one. In the sequel, the solution algorithm is described
for this problem.

(l) Specify input data: geometry of sample, elastoplastic properties of materials, bound­
ary conditions and FE mesh.

(2) Prescribe the admitted PT region (active set).
(3) Check all the elements in the admitted PT region, on the possibility of PT. For this

purpose we suppose that PT occurs in one element, then solve the elastoplastic
problem with a specified transformation strain in this element and calculate the PT
condition for this element «({J and driving force 2). In this way we have to check each
FE of the admitted PT region.

(4) Sort FEs with respect to the criterion of the maximum driving force X. The PT will
occur in the element with the maximum driving forces X. Prescribe the transformation
strain C02 for this element and repeat the solving of the elastoplastic problem. Cal­
culate the stresses and strains of the new two-phase state of the sample. Thus, we
define the FE where the PT occurs.

(5) Go back to step (2) and repeat the procedure to define the next FE where the PT
will occur.
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Fig. 22. Finite element mesh with refinement in the admitted PT region.

To decrease the calculation expenditure for searching for the next element, it is possible to
decrease the number of FEs in the admitted PT region using calculated driving forces of a
previous solution (e.g. only the elements with large value of driving forces for a previous
solution and the elements surrounding the elements where the PT has already occurred are
checked). We use the fact that PT in one element changes strain-stress state only in a
limited region surrounding this element. Of course, when PT has occurred in a sufficiently
large number of FEs, we should check the whole admitted PT region again. Thus, using
this algorithm, we define the kinetics of growth of the PT zone. The solution algorithm for
the problem is briefly presented in Fig. 23. Unfortunately, due to the complex structure of
functional cp, it is not possible to simplify this procedure.

4.3.1. The elastic matrix. At first, the case of the elastic matrix is considered. Figure
24 shows us the progress of the PT region (with a sequentially increasing number of Jinite
elements where PT occurs). The first nucleus appears at the edge of the sample (place of
stress concentration) and all the sequential nuclei appear on the interface between the new
and old phases. Thus, for this problem, in fact, the appearance and growth of one single
connected region takes place. The values of work integral, cp, for every subsequent Jinite
element where PT occurs, are presented as a diagram in Fig. 25; this diagram and PT
condition (11), demonstrate how the temperature of a sample should be varied for the
progress of PT.

For instance, after the appearance of the Jirst nucleus (at constant external conditions
and k = const) the burst-like PT in the second and third elements occurs. The fourth
element does not touch the corner point of the sample and the role of the stress concentrator
decreases significantly. That is why cp decreases sharply and the external condition should
be changed for the continuation of the PT.

The oscillated character of the diagram in Fig. 25 is often related to the case when two
sides of a transforming triangle element are in contact with elements where PT has already
occurred and for such an element the value of work integral, cp, is large (due to large
negative initial stresses enforced by the transformation strain of surrounding transformed
FEs). The analyses of PT progress is more complicated if k depends on a number of
parameters (for example, on the volume of region where PT has occurred).

Let us analyze the reasons for the formation of a single connected region of a new
phase. The stresses in transforming FE are a sum of initial stresses before PT (constant
part) and finite increment during PT (changing part). Ifwe have two phase material (matrix
and nuclei) then, for negative transformation strain in nuclei, the pressure in the matrix
has a minimum value near the interface and increases with an increase of the distance from
the interface. Thus, initial negative pressure before PT in transforming FE (constant part)
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Input data: geometry of sample, elastoplastic properties of materials, boundary
conditions

1
Generation of FE mesh (quadratic triangles)

1
Prescription of the admitted Pr region.

Reducing the number of FE' s of the admitted Pr region using calculated
driving forces of previous solution.

1
Searching a finite element with maximum driving force X for Pr. A loop over

FE of the admitted Pr region. Prescription of ~2 strain in the I-th element.
1=1,2,... , N, N is the number of FE's in the admitted Pr region.

1
Prescription of transformation strain increment in the I-th element

/1£0' £0 = £0 +/1£0 (0::; £0 ::; £ 02)

1
Iterative solution of elastoplastic problem. Calculation of local stress fields.

1
£0 < £02

Calculation of increment and current value of work integral qJ

qJn+! = qJn +30'>~£0; if =~Jcr dV
o V 0

v

1
I<N Sorting FE's with respect to the criterion of the maximum driving forces X.

1
-

Prescription of 1:;'2 for the element with the maximum driving force X.
Repeat solving elastoplastic problem. Calculation of stress-strain state of new

two-phase state of the structure

1
Does PI occur in whole region under consideration ?

Searching the next element where Pr will occur

Fig. 23. Solution algorithm for phase transition in elastoplastic materials with progress of the PT
region.

is the biggest for FEs near the interface between matrix and transformed FEs. The changing
part of the pressure in FE during PT (for FEs within large elastic matrix) is approximately
the same for different transforming FEs. Therefore, the work integral, qJ, is bigger for the
FE which is in contact with the transformed FEs and we obtain a single connected region
for the elastic matrix.

4.3.2. Elastoplastic matrix. Figure 26 shows us the progress of the PT region for the
elastoplastic matrix. In this case, the sequence of elements where PT occurs is more
complicated than for an elastic matrix. At first, every new nucleus has the common boundary
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Fig. 24. Progress of phase transition in a sample at compression for an elastic problem. Transformed
FEs are shaded.

with the old ones, but then the 12th element [Fig. 26(d)] forms another nucleus, which is
not in contact with previous ones. With the progress of the PT region, new nuclei form a
multiple-connected region. Such behavior of a sample is only forced by the distribution of
local stresses in the elastoplastic matrix. As the new phase is elastic, then plastic stress
relaxation occurs more easily when a new nucleus forms inside the matrix. As the internal
stresses, due to a previously formed new phase, promote the formation of a single connected
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Fig. 25. Variation of the work integral cp in the course ofPT for an elastic problem (N is the number

of transforming FE).

region, then the combination of these two contributions determines whether the new region
will be a single- or multiple-connected.

Now we analyze the reasons for the different shape of the transforming region for the
cases of elastic and elastoplastic matrix. We can consider the above elastoplastic problem
with P = 0 and O"~ = 0 (it is limit case), i.e. we have the problem of appearance of elastic
nuclei in fluid (matrix) at zero pressure. Then the stresses in a single-connected region of
the matrix will always be equal to zero during the PT, due to 0"';' = O. For any transforming
FE which is not in contact with a transformed FE, the work integral, <p, is equal to zero
(stresses in the transforming FE are zero, due to zero stresses at the interface matrix­
transforming FE). For transforming FE, which is in contact with a transformed FE, the
work integral <p, is negative (because of the jump of negative transformation strain across
the interface between the two FEs and the condition of elasticity of these FEs according to
the problem formulation internal stresses in transforming FE is nonzero). Thus, at k = const
and O"~ = 0 according to extremum principle (18) the shape of the new phase is more
profitable when the nuclei do not touch one another. The effect of plasticity in this case
(relaxation of stresses) is the same as the noncoherence effect. With varying yield stress of
the matrix, 0";, it is possible to change the value of the work integral, <p, for transforming
the FEs and, consequently, the kinetics of the PT. Plasticity reduces both the constant part
of pressure before PT (i.e. plasticity resists PT) and the changing part of pressure during
PT (i.e. promotes PT).

The values of the work integral, <p, for every subsequent element where PT occurs are
presented as a diagram in Fig. 27. The way of the analysis of the diagram is the same as
for the case of the elastic matrix in Fig. 25.

It is necessary to note that the problems 4.3.1 and 4.3.2 are solved under the same
external conditions and using the same finite element mesh. Preliminary investigations of
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Fig. 26. Progress of phase transition in a sample at compression for an elastoplastic problem.

Transformed FEs are shaded.

accuracy of numerical solutions showed that the maximum calculation error of the work
integral, qJ, is about 2-3% for elastic and 8-10% for elastoplastic materials. This error is
related to the fact that at PT transformation strain is given only in one element. A decrease
of the error can be achieved by increasing the polynomial order of FEs or dividing the
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Fig. 27. Variation of the work integral cp in the course ofPT for an elastoplastic problem (N is the

number of transforming FE).

element into smaller ones, i.e. using auxiliary meshes. More elaborate analyses of solution
error will be presented in a special paper.

5. CONCLUSIO~S

(1) A numerical study of martensitic PT in elastoplastic materials, based on a new
thermomechanical approach, is presented. PT condition based on the second law of
thermodynamics and related maximum principle are used. Stress history (during
transformation process) dependence is a characteristic feature of new PT criterion. A
simple way for admitting noncoherence and fracture at the interface is proposed.

(2) Solution algorithms of model problems of PT in elastoplastic materials (coherent and
noncoherent interface, interface with fracture, moving interface, progress of PT zone)
with use of new PT criterion are suggested.

(3) Numerous problems, related to nucleation in cylindrical elastoplastic sample, are solved
numerically by FEM. Conditions of nucleation in cylindrical elastoplastic sample were
obtained at different values of compressive force and values of transformation strain
(in cases of coherent and noncoherent interface as well as for interface with fracture).
It is shown that noncoherent interface and fracture promote considerably nucleation.
Progress of plastic strains (TRIP) in elastoplastic sample under cyclic appearance and
disappearance of new phase nucleus at fixed external force is considered. It was found
that increments of macroscopic plastic strain per cycle beginning from the second cycle
are almost the same.

(4) The problem of the progress of PT (layer by layer), in a cylindrical sample with a
moving coherent and noncoherent interface, is modeled. The driving force for the PT
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grows during the coherent interface propagation, consequently at k = const the PT
should occur in the whole sample at fixed external parameters. It is shown that the
noncoherent interface has low mobility or cannot move at all, which agrees with known
experiments.

(5) The problem of the progress of the PT zone (element by element), in the sample with
notch, is modeled. It is shown that for elastic materials the growth of a single-connected
region of new phase occurs. For elastoplastic materials complex multiple-connected
PT region (discrete microstructure) is obtained. It is related to the assumption that the
new phase is elastic, consequently, plastic stress relaxation occurs more easily when a
new nucleus has no contact with the previously formed new phase.

(6) It is planned to solve the problems of determination of microstructure of real material
at PT (allowing for crystallography of transformation strain) using new the:rmo­
mechanical criterion.

Let us compare our approach with the published ones [Ganghoffer et al. (1991); Marketz
and Fischer (l994a, 1994b)], where the progress of PT (and, consequently, PT criterion)
for coherent interfaces is estimated by the maximization of transformation work, (J: Ill'

where (J is the stress before PT. Of course, such an approach is much simpler, because for
choosing the next transforming element it is not necessary to solve the large number of
elastoplastic problems with trial transformation strain in each element. Stress conjugated
with the transformation strain (in our case «10) varies significantly with the growth of the
transformation strain (especially for the coherent interface), changes the sign and the work
integral, qJ, has a completely different (much smaller) value than at constant «10 , Thus, in
problem 4.1.1, at P = 50 MPa with fixed stress, we get qJ = 3' 50' 0.005 = 0.75 MPa at
1801 = 0.005, but qJ = -0.3 MPa in our case with changing stress states (Figs 6 and 7).
Consequently, the results are qualitatively different. Since at constant (J the value qJ is much
bigger in the above-cited papers than in our case, PT can start earlier, at smaller .f and
probably at X < 0, which is in contradiction with the second law of thermodynamics.
Consequently, despite the fact that the numerical implementation of PT criterion (11)1 is
more complicated, other simpler ways can be qualitatively contradictory. Note, that we do
not know other published results on PT in elastoplastic materials with crack or non­
coherence at the interface.
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